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S1. Vapour pressure of elements 

 

Fig. S1. Vapour pressures of Al, Mg and Zn calculated using the parametrisation 

log � 𝑝𝑝
atm

� =  𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 log(𝑇𝑇) and tabulated coefficients 𝐴𝐴,𝐵𝐵,𝐶𝐶 [1]. For Zn, values for 

both the highest and lowest solutionising temperature applied in this work are given. A 

value for Mg at the solutionising temperature of the Al-Mg-Si alloy is also specified. 

The vapour pressure of a component of an alloy determines how fast this component is depleted 

during solutionising. Mg and Zn are known to have high vapour pressures and therefore 

attention has to be paid to possible losses. In bulk alloys, losses are limited to areas close to the 

surface and bulk compositions measured after solutionising do not show notable composition 

changes. Depletion of Mg from Al-Mg-Si alloys has been investigated by various researchers 

([2, 3] and others) mostly by measuring global properties. Concentration profiling led to the 

conclusion that Mg depletion during solutionising in air is limited to a 10-µm thick surface 

layer [4], which implies that age hardening of most engineering parts will hardly be affected. 

In the present work, however, the situation is different since atom probe samples of very small 
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dimensions are solutionised. Therefore losses have to be expected and the selection of suitable 

solutionising temperatures and times is important. 

 

S2. Atom probe mass spectra 

 

Fig. S2. Typical mass spectrum of Al-Zn alloy obtained by APT. Hydrogen (dark yellow, 

2 isotopes), Al (cyan, single and double charge, 1 isotope) and Zn (grey, single and double 

charge, 5 isotopes) are detected. 

The mass spectra obtained can be easily decomposed into Al and Zn contributions. 

 

S3. Calculation of radial distribution functions 

Program IVAS 3.6 provides a built-in function for calculating radial distribution functions but 

this has not been used here because some subtleties of averaging have to be considered and it 

is not entirely clear how IVAS handles these. 

Radial distribution functions are obtained by considering concentric spheres of radius 𝑅𝑅 of 

spacing ∆𝑅𝑅 around a given central Zn atom (indexed by 𝑖𝑖) in an APT data set, counting the 

number of Zn atoms in each shell between two adjacent spheres,  

𝑁𝑁Zn,i(𝑅𝑅,∆𝑅𝑅), (1) 

and then averaging these histograms over all 𝑛𝑛Zn central Zn atoms selected: 

𝑁𝑁�Zn(𝑅𝑅,∆𝑅𝑅) = ∑ 𝑁𝑁Zn,i(𝑅𝑅,∆𝑅𝑅)
𝑛𝑛Zn

𝑛𝑛Zn
𝑖𝑖=1 . (2) 

Evaluation of Eq. (2) can be time consuming for large data sets because many distances between 

pairs of Zn atoms have to be calculated. 
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A completely random distribution of Zn atoms should yield a constant value for 𝑁𝑁Zn(𝑅𝑅,∆𝑅𝑅) if 

normalised by the volume of the respective shell and clustering would be detected by an 

increased value for small 𝑅𝑅. However, due to non-uniform atomic densities in APT data sets it 

is preferable to eliminate such effects by comparing 𝑁𝑁�Zn(𝑅𝑅,∆𝑅𝑅) to the analogous quantity 

calculated for a randomised data set in which all atomic coordinates are kept constant but the 

atomic types are reshuffled randomly, leading to 

𝑁𝑁Zn,𝑖𝑖
rnd(𝑅𝑅,∆𝑅𝑅)  (3) 

instead of Eq. (1). This quantity is also averaged over all selected central Zn atoms 𝑖𝑖, yielding 

the analogy to Eq. (2). We then consider the ratio 

𝑓𝑓Zn(𝑅𝑅,∆𝑅𝑅) = 𝑁𝑁�Zn(𝑅𝑅,∆𝑅𝑅)
𝑁𝑁�Zn
rnd(𝑅𝑅,∆𝑅𝑅),          (4) 

which should be close to unity for a random distribution of Zn atoms. The randomisation 

process can be carried out in various ways. Most simply one could give all Zn atoms a new 

position simultaneously and then calculate 𝑁𝑁�Znrnd(𝑅𝑅,∆𝑅𝑅) based on the resulting random 

distribution. Because the number of Zn atoms has to be kept constant, Zn atoms will move to 

positions occupied by Al in the APT data set, which implies that the positions of the central Zn 

atoms in the nominator and the denominator of Eq. (4) are no longer the same, which possibly 

has a small influence on the result. To avoid this, one can fix the position of just one central Zn 

atom and randomly reallocate the remaining (𝑛𝑛Zn − 1)  Zn atoms (also implying moving Zn to 

Al positions) and calculate Eq. (3). This has to be done 𝑛𝑛Zn times before calculating an average 

analogous to Eq. (2). Now, the averages 𝑁𝑁�Zn(𝑅𝑅,∆𝑅𝑅)  and 𝑁𝑁�Zn,𝑖𝑖
rnd(𝑅𝑅,∆𝑅𝑅) are based on the same 

central Zn atom positions but a lot of computation time is consumed if 𝑛𝑛Zn represents many 

thousands of atoms. Therefore, we choose the compromise to fix the position of a subset {Zn}𝑘𝑘 

of 1% of all Zn atoms and to randomise the remaining 99%. This is repeated 𝐾𝐾 = 100 times 

for disjunct subsets, after which an average of the 100 resulting 𝑁𝑁{Zn}𝑘𝑘
rnd  is computed. 

Another aspect is that of statistical fluctuations. For small 𝑅𝑅, 𝑁𝑁Zn,i in Eq. (1) can be as small as 

100. Randomisation then leads to fluctuations of the order �𝑁𝑁Zn,𝑖𝑖
rnd in the denominator of Eq. 

(4), i.e. up to 10% of the entire expression. As we wish to discuss minute deviations of Eq. (4) 

from unity in this paper, a reduction of such fluctuations is sought by repeating the calculation 

of 𝑁𝑁�Znrnd  𝐽𝐽 times (we choose 𝐽𝐽 = 100) with different randomisations and averaging the results. 

This should bring down fluctuations to 1%. Eventually, the denominator in Eq. (4) turns into 
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𝑁𝑁�Znrnd(𝑅𝑅,∆𝑅𝑅) = 1
𝐾𝐾𝐾𝐾

 ∑ ∑ 𝑁𝑁{𝑍𝑍𝑍𝑍}𝑘𝑘
rnd,j (𝑅𝑅,∆𝑅𝑅)𝐾𝐾

𝑘𝑘=1�������������
𝑁𝑁�Zn
rnd,j

𝐽𝐽
𝑗𝑗=1 . (6) 

The value for 𝑓𝑓 calculated from Eq. (4) will still deviate from 1 even for perfectly random Zn 

contributions. For the denominator, we use the standard deviation of the 𝐽𝐽 different 

randomisations 𝑁𝑁Zn
rnd,j from their average value 𝑁𝑁�Znrnd as an uncertainty ∆𝑁𝑁rnd and write for the 

uncertainty of 𝑓𝑓 (dropping the index Zn and the argument (𝑅𝑅,∆𝑅𝑅)): 

∆𝑓𝑓 = 𝑁𝑁 ∆𝑁𝑁rnd

�𝑁𝑁rnd�
2 = 𝑓𝑓 ∆𝑁𝑁rnd

𝑁𝑁�rnd
,    with   ∆𝑁𝑁rnd = �∑ �𝑁𝑁Zn

rnd,j−𝑁𝑁�Zn
rnd�

2𝐽𝐽
𝑗𝑗=1

𝐽𝐽
. (7) 

Another choice to be made is that of the central Zn atoms to be included in Eq. (2). We calculate 

𝑁𝑁Zn,i(𝑅𝑅,∆𝑅𝑅) and 𝑁𝑁Znrnd(𝑅𝑅,∆𝑅𝑅) for Zn atoms within a sphere of radius 𝑅𝑅1 =10 nm around a 

given origin in the APT data (yellow spheres in Fig. S3) and let 𝑅𝑅 range up to 𝑅𝑅 = 10 nm. This 

implies that Zn atoms within a sphere of radius 𝑅𝑅2 =20 nm around the origin contribute to 

Eqs. (1) and (3) (e.g. dashed orange sphere). We make sure that the entire sphere of radius 𝑅𝑅2 

lies inside the APT data set. When randomising the Zn distribution, the Zn concentration within 

the central sphere and the outer region (orange sphere without the yellow sphere) are kept 

constant separately so that the number of Zn atoms in the inner sphere is the same in all 

randomised data sets. Depending on how big the APT data set is, various points of origin are 

chosen for independent calculations that are then averaged (9 in the example shown in Fig. S3).  

 

Figure S3. Definition of averaging volumes in the (𝑥𝑥,𝑦𝑦) plane of an APT data set (units 

are nm).  The broken and solid circles defines concentric spheres of radius 𝑅𝑅2  =  2𝑅𝑅1 = 

20 nm. The inner volume (yellow) contains all the central Zn atoms that are included in 

Eqs. (1) and (3), the outer volume (orange, shown for just one sphere) all the Zn atoms 

that are at 10 nm distance from any atom in the inner (yellow) sphere.  
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With all these measures we minimise effects on 𝑓𝑓Zn(𝑅𝑅,∆𝑅𝑅) not caused by clustering but by 

density fluctuations in the APT data set and other distortions. Test calculations of various data 

sets, where both Al and Zn positions were randomised without constraints show that 𝑓𝑓Zn(𝑅𝑅,∆𝑅𝑅) 

is equal to 1 within a margin of 0.01 for small 𝑅𝑅 and 0.003 for larger values up to 10 nm, see 

Fig. S4. 

 

Fig. S4. 𝑓𝑓Zn(𝑅𝑅,∆𝑅𝑅) of the data set shown in Fig. 4 of the main paper (red open symbols) 

but with a randomisation of all the Al and Zn atom positions (black full symbols). 

The procedure described here for calculating RDFs is inspired by procedures given in Ref. [5]. 

It differs by the slightly different error calculation and by the details of averaging described 

above. Moreover, we do use ratios 𝑓𝑓 and not cumulated ratios as in Ref. [5]. Altogether, 

however, the rationale of the calculation is the same, namely to prove the absence of clustering. 

 

S4. Experiments on Al-Mg-Si alloys 

Nano-solutionising experiments were carried out on some APT samples made of Al − 

0.6wt% Mg − 0.8 wt.% Si alloy. The samples were crimped inside Inconel tubes instead of Cu 

as for Al-Zn alloys to avoid the formation of a low-melting Al-Cu eutectic during solutionising. 

The samples were mounted in a holder of the type shown in Fig. 1 of the main paper and sealed 

in evacuated Pyrex tubes. Solutionising was performed at 540 °C for effectively 10 min (+ 5 

min needed to reach the end temperature), after which the APT samples were cooled in air.  

APT experiments were successful and 15 million atoms could be detected in one case. However, 

the time-of-flight mass spectra showed no trace of Mg unlike in samples that were bulk 

solutionised, see Fig. S5b, compared to a spectrum obtained on a bulk-solutionised sample that 
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shows Mg (0.6 at.%), Al and Si (0.7 at.%) in approximately the correct intensities, see Fig. S5a 

(note that the concentration analysis also includes peaks not shown here). The loss of Mg was 

expected in view of the very high vapour pressure of Mg, see Fig. S1, which is actually 10 to 

100 times higher than that of Zn in Al-Zn alloys at the respective solutionising temperatures. 

Ref. [5] reports that the Mg content in a similar alloy was notably reduced after ageing thin Al-

Mg-Si samples of 20 µm tip radius, from which APT samples were prepared in a second step 

(see also Ref. [6]). Fig. S5b also shows that the intensity of the Si peaks is greatly reduced (to 

0.085 at.%), corresponding to a loss of 90% of the Si atoms, which is unexpected because a 

very high suspected vapour pressure of Si. 

a) 

  b) 

 c) 

Fig. S5. Range of mass spectra of Al-Mg-Si alloy in which the peaks of doubly charged 

Al, Mg and Si ions are observed (blue=three isotopes of Mg, grey=one isotope of Al, red= 

three isotopes of Si). a) bulk-solutionised at 540 °C for 30 min, quenched and NA, b) 

nano-solutionised at 540 °C for 10 min (excluding heating ramp of about 5 min), 

quenched and NA. c) sample with a protective Pt cap applied, nano-solutionised at 535 °C 

for 5 min (excluding heating ramp of about 5 min), quenched and NA. 

In an attempt to prevent total loss of Mg, a Pt cap was deposited on two APT samples before 

solutionising using a Focussed-Ion Beam facility ‘Thermofisher G4 Hydra Plasma FIB-SEM’, 

thus providing a protective layer around the tip and part of the shank of the sample. The 

solutionising temperature was reduced to 535 °C, solutionising time to 5 min (+ 5 min heating 
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time). After solutionising the cap was removed in the FIB and an APT experiment started. 

Again, no Mg was detected in the two mass spectra, but the Si peaks show very high intensities 

(corresponding to 1.8 at.%), i.e. no losses of Si are recorded, see Fig. S5b. As a total of only 4 

experiments are available on nano-solutionised samples (2 each for unprotected and Pt-cap-

protected APT samples), the phenomenon of varying Si concentration cannot be fully explained 

at this stage. 

In summary, Al-Mg-Si APT samples are very robust considering that they survive solutionising 

at 540 °C and quenching, but Mg cannot be retained in the samples. Once in-situ flash ageing 

facilities become available (see comments in Sec. 3.5 of main paper) such experiments could 

become feasible through a reduction of solutionising times down to seconds. 

S5. Radial distribution functions of naturally aged samples 

Fig. 6a of the main paper shows the relative radial distribution function of a sample that was 

first nano-solutionised and quenched and later re-polished to expose deeper lying areas and to 

have them in the tip area of the APT sample. In order to compare this result to that of samples 

bulk-solutionised, quenched and aged, Figs. S6 and S7 contain data for two such samples. 

Obviously, the clusters are much coarser for the sample naturally aged for 8 d (bottom row) 

than for the sample aged for just 4.5 hours (top row). Quantitative cluster analysis (2nd column) 

shows this more clearly and also provides some quantitative numbers: the short ageing time 

give rise to clusters that contain on average 60 atoms, whereas 8 d of ageing creates average 

cluster sizes of 130 atoms. The largest cluster in the sample aged for 4.5 h contains 1700 atoms, 

in the sample aged for 8 d 3800 atoms. 

The frequency histograms of the nearest neighbour distributions reflect the deviation from a 

random distribution very clearly and again, the long ageing time gives rise to the biggest 

deviation. 
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Fig. S6. Bulk solutionised and naturally aged samples Al-Zn samples. Left column: 

depiction of Zn atoms and specifications of sample and ageing procedures, middle: result 

of cluster analysis applying the maximum separation algorithm using the specified 

parameters, right: frequency histograms of 1NN distances. 

The radial distribution functions in Fig. S7 all show the profile already noted for the re-polished 

sample in Fig. 6a of the main paper, namely a high initial value, a decrease to 1 and a zone of 

values slightly below 1 above a certain radius 𝑅𝑅RDF=1. This value of the radius roughly 

corresponds to the observed cluster size. Assuming spherical clusters, the above mentioned 

numbers of atoms in the largest cluster translates to radii of 2.3 nm and 3 nm, respectively 

(taking into account a detection efficiency of 57%). As the clusters are not all spherical the 

clusters are more extended and enhanced Zn-Zn (𝑓𝑓>1) correlation exists for larger distances, 

namely 3.8 nm and 5 nm in Fig. S7. For even larger values of R, 𝑓𝑓<1 indicates a Zn depletion 

zone around the clusters. Considering a broad cluster size variation the information contained 

in 𝑓𝑓 is highly convoluted. Fig. S7 shows clearly that the volumes in re-polished samples are no 

different from volumes in bulk-aged and NA samples. 
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Fig. S7. 𝑓𝑓Zn(𝑅𝑅,∆𝑅𝑅) of the data sets shown in Fig. S6. Arrows mark the radius at which 

𝑓𝑓 = 1. 
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