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Abstract

We report the results of an experimental and numerical study conducted on a
closed-cell aluminium foam that was subjected to uniaxial compression with lateral
constraint. X-ray computed tomography (XCT) has been utilised to gain access
into the 3D structure of the foam and some aspects of the deformation mecha-
nisms. A series of advanced 3D image analyses are conducted on the 3D images
aiming at characterising the strain localisation regions. We identify the morpholog-
ical/geometrical features that are responsible for the collapse of the cells and strain
localisation. A novel mathematical approach based on a Minkowski tensor analysis
along with mean-intercept-length (MIL) technique were utilised to search for signa-
tures of anisotropy across the foam sample and its evolution as a function of loading.
Our results show that regions with higher degrees of anisotropy in the undeformed
foam have a tendency to initiate the onset of cell collapse. Furthermore, we show
that strain hardening occurs predominantly in regions with large cells and high
anisotropy. We combine finite element method (FEM) with the tomographic images
to simulate the mechanical response of the foam. We predict further deformation in
regions where the foam is already deformed.

Key words: X-ray computed tomography; foams; compression test; finite element
method.

Preprint submitted to Elsevier February 17, 2012



PACS:

1 Introduction

Metallic foams offer a combination of light weight, good thermal and acoustic
insulation, as well as excellent mechanical response such as high structural
efficiency under flexural loading conditions and outstanding capacity to ab-
sorb impact energy. These qualities make them ideal candidates for a variety
of applications. The physical and mechanical properties of a foam depend di-
rectly on its cellular structure, which is highly stochastic in nature. Hence,
there has been a great deal of effort in the recent past to understand the
structure-property correlations in foams, so as to optimise the foam’s me-
chanical performance for a given application.

Both elastic and plastic deformation in metallic foams are often inhomoge-
neous. The onset of plastic deformation under the influence of uniaxial com-
pression is such that locally some cells begin to buckle and eventually collapse
starting the onset of a highly localised collapse band [1–5]. An important ques-
tion that is yet to be answered comprehensively in this context is the following:
what are the structural and morphological factors that trigger the localised
collapse of cells? The answer to this question will be sensitive to the imposed
boundary condition. A thorough investigation of the geometrical and topo-
logical interconnectivity of the foam structure as well as its stress response
to external loading will shed light into the complex dynamics of deformation
associated with the foam. The aim of this study is to provide some key insights
into this.

A large body of literature on research that has been conducted hitherto on the
deformation mechanism of metallic foams is available. However, most of these
studies are limited to the examination of cells and structural features that are
present on the surface of the specimen [1, 2, 5, 6]. While these studies provide
valuable insights into the understanding of compression/deformation mecha-
nisms in cellular material, they do not truly reflect the inter-connectivity of
the cells in the bulk as they do not have access to the spatial arrangement
of cells in three-dimensions (3D). Moreover, these methods are invasive and
usually involve cutting/polishing of the specimens therefore affecting the very
structures/cells that they aim to study. Recently, X-ray computed microto-
mography (µ-CT) has been utilised to gain access into the 3D structure of the
foams and also some of the deformation mechanisms. The main advantage of
this technique is that it is non-destructive and allows for acquiring the full
3D structural information. In the present work, we employ µ-CT to analyse
the deformation of a closed-cell aluminium foam sample subjected to uniax-
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Figure 1. Experimental stress-strain response recorded during constrained compres-
sion of closed-cell Al foam, ALPORAS, specimen subjected to several stages of
loading and unloading.

ial compression with lateral constraint, to successive stages of deformation
(details in section 2) [7–9] . A series of advanced 3D image analyses, which
allow for the measurement of cell size, shape and orientation in 3D directly
from the images and aiming at characterising the strain localisation regions
are conducted in order to identify the morphological/geometrical features that
are responsible for the collapse of the cells and strain localisation. We com-
bine the novel mathematical tool of Minkowski functionals and tensor analysis
to extract anisotropy across the foam sample and observe its evolution as a
function of loading. Additionally we carry out a mean-intercept-length (MIL)
anisotropy analysis to validate the results of Minkowski tensor analysis. Then,
we combine the tomographic data with the finite element method (FEM) to
simulate the mechanical response of the foam. We also investigate the effect of
strain hardening by calculating the elastic moduli of the sample at each stage
of compression. This provides us an understanding of how the mechanical re-
sponse of the foam sample changes before and after deformation localisation.
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2 Compression experiment and tomographic reconstruction

A closed-cell ALPORAS aluminium foam supplied by Shinko Wire (Japan)
was used in this study. ALPORAS has been used in many of the recent studies
on mechanical testing of metallic foams as a standard material [3, 5, 10, 11],
as it is supposed to have a homogeneous cellular structure [12]. Processing
details and relevant properties of this foam are found in [12]. A sample of
50×50 mm2 section and 101 mm height was electro-discharge machined from
a single large plate of ALPORAS foam. The thickness of the plate coincides
with the loading direction. A die-steel sleeve of 50 × 50 mm2 inner cross
section and 118 mm depth was used as lateral constraint during deformation.
The inner area of the sleeve was chosen such that the sample fit easily into
the sleeve. The foam sample was fixed into the sleeve with the help of screws
(which enabled easy removal of the sample after deformation). After that a
solid block of aluminium was placed on top of the foam sample. This entire
setup was placed between parallel rigid plates of the universal testing machine
and tests were performed [3]. The sample was compressed at a rate of 0.1mm/s
(using a servo-hydraulic universal testing machine with displacement control).
After imparting different amounts of strains (see Fig. 1) [3], the test sample
was removed from the sleeve and imaged using µ-CT to acquire the 3D digital
dataset (see Tab. 1). The strain applied to the foam is above elastic limits
(see Fig. 1), so given the large cell sizes and the existence of imperfections and
topological defects in the structure of the foam [3], the expectation is that the
deformation is non-uniform [6,13].

A microfocus X-ray source (100 kV acceleration voltage, 100 µA current and 5
µm spot size) and a flat panel detector (area 120×120 mm2, 2240×2368 pixel2,
pixel size 50 µm) both supplied by Hamamatsu (Japan), were used for imaging
[15]. The foam was placed on a motor controlled rotating stage with the height
of the foam perpendicular to the X-ray beam direction. The foam was rotated
one degree at a time around its vertical axis and a radioscopic projection
of the foam was taken after each rotation. A total of 360 projections with
an exposition time of 8 s were obtained for a complete rotation of the foam.
Tomographic cone beam reconstructions were then performed [16] on these 360
projections using the commercial software Octopus 8.1. With this setup, an
effective voxel size (spatial resolution) of 45.58 µm is achieved. Fig. 2 shows the
3D reconstruction of our foam sample at different stages of compression. After
acquiring images, deformation was continued by re-mounting the sample into
the sleeve. Tomographic images of the same sample in more deformed states
were acquired after further deformation.

The tomographic image consists of a cubic array of reconstructed linear X-
ray attenuation values, each corresponding to a finite volume cube (voxel) of
the sample. Binarised datasets (digital representation of foam structures) are
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Figure 2. 3D reconstruction of the metallic foam sample examined in the present
work at initial and four different stages of compression. These renderings are based
on tomographic datasets of stages 0 through 4. Visualisation was performed with
Drishti, an open source 3D volume rendering software [14]. The side bar A-F shows
the regions where densification occurs (see Fig. 4).

used as the basis for all calculations presented in this paper. An example of
the X-ray intensity histogram and a gray-scale X-ray density map for a 2D
slice obtained from the uncompressed dataset, stage 0, is given in Fig. 3.

The intensity histogram ,Fig. 3(b), shows a distinct peak associated with
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(a) (c)(b)

absorbed X-ray intensity

Figure 3. (a) Gray-scale X-ray density map of a slice of dataset 0 (tomogram of stage
0), (c) the same slice after binarisation, and (b) Normalised intensity histogram
for the full image volume of dataset 0 (intensity values have arbitrary units and
range between 0 and 65000). A cut-off value of 22500 of intensity is used to phase
separate the image and to achieve target relative density, as obtained from weighing
the precompressed sample (stage 0).

the pore phase (around 1080) but not a clear peak for the solid (metal)
phase. This is usually due to very low solid fraction and also high value of
noise-to-signal in the image. With the knowledge of the physical dimensions
(50.0×50.0×101.6 mm) and the weight of the specimen (60.92 g), the density
of our sample can be calculated as 0.24 g/cm3. Knowing also the density of
aluminium (2.7 g/cm3), the apparent (relative) density of our foam sample
is ρal/ρs ≈ 0.089 for the uncompressed stage. This knowledge enables us to
choose the correct threshold value (22500) for binarisation of the tomograms
so that the final segmented dataset has a solid fraction of the measured rela-
tive density of the sample. The resultant image based solid fraction (relative
density) at the measured attenuation cut-off for dataset 0 is ρimage = 0.090
(see Tab. 1). The segmentation process is followed by an isolated solid clus-
ter removal to remove noise artefacts (small unconnected domains of solid in
pores). However, the thickness of the solid wall in our compression samples is,
in some places, only a few voxels. Therefore a three-step technique based on
intensity gradients for image enhancement and segmentation is used to pre-
serve the thin films [17]. Comparison of the grey-scale and binarised image of
a 2D slice of stage 0 is shown in Fig. 3(a) and (c).

3 Morphological/geometrical analysis

3.1 Density

Relative density is extracted from the segmented datasets as the ratio of the
sum of the total number of voxels belonging to the solid phase to the total
number of voxels that make up the dataset (see Tab. 1). To better understand
the spatial distribution of aluminium phase across each dataset at different
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stages of compression, we calculate the density profile along the loading axis (Z
axis). Fig. 4 shows the average density in each slice along Z calculated in sub-
volumes of 50.0× 50.0× 5.5 mm. The choice of the sub-volume is made such
that given the cells average diameters (see Tab. 1), the sub-volume contains
at least one complete cell. Each sub-volume is then moved by one slice along
the loading axis and the density is re-calculated again in the new sub-volume
resulting in the generation of a data point in Fig. 4. This process is repeated
until the moving sub-volume covers the whole length of each sample.

Fig. 4 suggests a relatively homogeneous density profile for dataset 0. How-
ever, as the sample is further compressed, the density (solid fraction per unit
volume) increases steadily with the appearance of a prominent densification
peak around the area with Z coordinates between 10 − 25 mm and also at
the two ends of the sample. The last stage of compression shows six distinct
regions with higher densities, which are illustrated in Fig. 4. Note that the
localised deformation bands B, C, D and E in stage 4 have widths of about

Compression
0 1 2 3 4

stage

Accumulated
0.00 4.93 9.56 17.64 25.32

strain [%]

Sample
101.5 96.5 91.8 83.6 75.8

length [mm]

Measured density
0.089 0.094 0.098 0.108 0.112

ρrel = ρ/ρal

Image density
0.090 0.094 0.099 0.107 0.113

ρimage

Average cell
1.21±0.59 1.15±0.57 1.14±0.59 1.02±0.55 0.77±0.49

diameter [mm]

Average cell
16.2±3.1 14.7±2.8 13.2±2.2 11.5±2.9 9.3±2.7

volume [mm3]

Number of
7324 7377 7885 7982 8439

cells

Average
12.9±3.6 11.4±3.4 10.6±2.4 9.8±1.9 7.5±1.7

coord. no.

Table 1
Experimental (row 1-3) and image based (row 4-8) details of the compression pro-
gression derived from the tomographic images.
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Figure 4. Density profile of the compression stages 0 to 4. Average density is calcu-
lated in a a sliding window of size 5.5 mm along the loading direction (Z direction).
The sliding window moves slice by slice along the Z axis (simbols are sparsed for
better viewing). Densification is pronounced in six regions in stage 4: A: bottom of
the sample. B: around Z ≈ 10 − 25 mm where most cells collapse. C: at around
Z ≈ 30 mm. D: at around Z ≈ 40 mm. E: Z ≈ 50 mm. F: top of the sample.

15, 10, 10 and 10 mm, respectively. This is in the order of 3 to 4 cell diame-
ters. The distance between the deformation bands (peak-to-peak distance of
the relative density) is about 3 cells. Both of these observations are consistent
with previous studies of deformation mechanism in compressed ALPORAS
foams [2, 6].

3.2 Cell identification

Any analysis of the volume, shape, orientation and coordination number of the
cells requires the pore phase (cells) to be partitioned into separated cells. A
watershed based pore partitioning algorithm [18,19] was applied to the 3D seg-
mented datasets to separate individual cells. Fig. 5(a-b) shows 2D slices of the
cell partitioned datasets of (stages 0 and 4). Here, the colour coding is merely
for aiding the eye to distinguish neighbouring cells. The labelled datasets are
now amenable to a range of geometrical analyses that are presented below.
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Figure 5. 2D slices (x − z plane) selected from 3D datasets of the (a) undeformed
stage and (b) deformed stage (stage 4) showing the collapsed cell bands labelled
as G-J with a prominent collapsed band around H. This labelling is different from
those shown in Figs. 2 and 4 where labels represented densification of solid phase.
(c) Centre of mass of cells within stage 4 presented as a single point in 3D. The
concentration of the centres of masses in parallel planes (x− y planes) are evident.

3.3 Cell size/count

Fig. 6 shows a histogram of the cell sizes for each dataset. For the measure-
ment of cell size, we use the equivalent diameter of a sphere whose volume
is the same as a cell volume. In order to remove noise from the data, we
filter out cells whose linear dimensions are smaller than 5 × 5 × 5 volxels
(volume≈ 0.01 mm3). All datasets exhibit a bimodal cell size distribution
with an increasing shift towards higher population of smaller cells as the de-
formation progresses. Plastic buckling and collapse of cells is the reason for
the observed shift in the size distribution. Counting the number of cells in
each dataset confirms that an increase in loading increases the total number
of cells in each dataset (see Tab. 1). While this increase in the number of cells
could be attributed to the deformation and buckling of cell walls (they touch
fully thus dividing one cell into two), this could also be an artifact from the
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Figure 6. (a) Histogram of cell diameters. (b) Average cell volume along the loading
axis for all datasets (simbols are sparsed to ease viweing the curves’ trends). Pro-
gressing deformation of cells decreases their sizes around two main collapsed bands
(H & I) in addition to the boundary cells at the top and bottom of the specimen
(stage 4).

watershed algorithm 1 . To minimise this artifact, we visually inspect the result
of cell partitioning to make sure that cell identification looks reasonable and
correct input parameters are set [18]. These sets of parameters are used to
label all 5 foam datasets.

We also calculate the spatial distribution of cells by measuring the average cell
size in unit volumes across all the five datasets. Fig. 6(b) shows the measured
average cell volume per unit volumes of 5.0×5.0×5.5 mm in a sliding window
whose height is 5.5 mm along the loading axis. Two peaks associated with
smaller cell sizes appear in these datasets which are in the regions where most
of the cells deform and collapse (shown as regions H and I). It is notable
that in the uncompressed dataset (stage 0), there are two regions where cell
volumes are larger than the average cell volumes in stage 0. These regions are
indicated by arrows in Fig. 6(b). Both of these regions are where a collapse
band of cells will develop at later stages of compression. Fig. 5(c) shows the
centre of mass of cells in stage 4 as a single point in 3D. The collapse bands
are clearly visible as regions with concentration of larger number of (smaller)
cells. The cells collapse in almost parallel planes across the sample separated
from one another by a distance of roughly 4− 5 cell diameters.
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Compression
0 1 2 3 4

stage

Average aspect
0.47± 0.05 0.46± 0.05 0.45± 0.05 0.41± 0.06 0.37± 0.05

ratio

Average asp. ratio

0.46± 0.06 0.46± 0.06 0.43± 0.07 0.35± 0.07 0.31± 0.07
in regions where

collapse occurs

at stage 2,3,4

Table 2
Average aspect ratio calculated as the ratio of 2R/L. Systematic decrease in aspect
ratio with increasing loading is notable.

3.4 Cell shape and orientation

Cell partitioning allows for more detailed analysis of individual cells. Most of
shape/proportion analysis involves measuring the three linear dimensions of
the cells. If it is assumed that the shape is a regular biaxial ellipsoid with long
(L), intermediate (I) and small (S) axes, the aspect ratio is defined as the
ratio of 2R/L, where R is the equivalent radius of each cell. This definition
leads to an aspect ratio of 1 for a perfect sphere. The aspect ratio calculations,
summarised in Tab. 2, show that the average aspect ratio decreases as com-
pression progresses. This observation implies that cells deviate further from
a symmetric round shape upon deformation. We also calculated the average
aspect ratio only in the main collapse band (10 − 20 mm) and found it to
be lower than its total average value across the whole dataset. For instance
a value of 0.31 ± 0.07 compared with 0.37 ± 0.05 in dataset 4 (see Tab. 2
more details). This implies that, although some uniform deformation occurs
as loading increases, deformation becomes increasingly more localised in some
regions.

From the measurement of three primary cell axes one can also obtain infor-
mation on cell orientation. We calculate the orientation of the primary axis L
(longest axis) of each cell to describe the degree of preferential orientation of
cells within each dataset. We calculate the direction cosines of the long axis
of each cell (cos(α) = L·x̂

‖L‖ , cos(β) = L·ŷ
‖L‖ , cos(γ) = L·ẑ

‖L‖) where α, β and γ are

the angles between vector L and the three coordinate unit vectors (x̂, ŷ and

1 As the cell walls begin to buckle, even if they will never touch, the deforming walls
form a channel that changes in size as compression increases. Using the watershed
algorithm, the size of these channels is the main criteria for determining if the cell
should be digitally identified as two separate cells.
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Figure 7. (a) Schematic representation of the orientation of long axis of the cells
(L) represented by the direction cosines. (b) Evolution of the L with increasing
compression. Each point is averaged over all the cells in each dataset.

ẑ) as demonstrated in Fig. 7(a).

Fig. 7(b) shows the average values of α, β and γ for stage 0-4. It is evident that
the cells are oriented towards the y axis even in the uncompressed dataset.
This could be the result of the manufacturing process of ALPORAS foam. In
the making of ALPORAS, the release of gassing agents in molten aluminium
creates bubbles that interact with their neighbouring bubble. These bubbles
experience buoyancy due to gravity and as a result a foam growth direction
is imposed. Additionally, when producing large blocks of ALPORAS, there is
a small temperature gradient across the block which can also lead to inho-
mogeneous development of blowing agent and bubble generation. Before final
cooling and solidification, the relatively aligned bubbles drain further and form
cells which now have a preferred alignment [19–21].

Fig. 7(b) implies that as the compression progresses (more clearly in stages 2-
4), γ increases whereas α and β decrease. This is expected as uniaxial loading
is applied along the z direction. It is notable that the rate at which α decreases
is larger than β suggesting that the cells tend to be elongated toward the x
axis as they deform hence producing shear in x direction.

3.5 Coordination number

After cell identification and subsequent labelling of them, one can obtain a
list of nearest neighbours of all the cells. From this list, it is straight-forward
to determine the number of cells that are in contact with each cell either
by sharing a wall or through the openings in the cell walls. This quantity
is known as coordination number and we compute it for each cell and plot
its distribution for each dataset as shown in Fig. 8(a). It is notable that the
distribution changes towards lower values as the compression progresses. The
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Figure 8. (a) Distribution of coordination number for all five datasets. (b) Corre-
lation between volume of cells and their coordination number for dataset of stage
3.

average values of the coordination number are presented in Tab. 1. In section
3.3 we showed that cell sizes decrease as the applied load increases. This may
suggest that smaller cells have lower coordination number on average. This
can be tested by plotting the coordination number of each cell as a function of
their volume. Fig. 8(b) shows such correlation for stage 3. This plot, although
scattered, shows that smaller cells are surrounded by fewer number of cells,
hence have lower coordination number 2 .

For an ideal system of dry foam with monodispersed cell sizes, one would ex-
pect an average coordination number of ∼ 13 [23]. It has been shown that
the introduction of polydispersity to such foam systems decreases the average
coordination number [21, 24]. Kraynik et al. in [25] use a measure of polydis-
persity, p =< R3 >2/3 / < R2 > −1, to demonstrate the influence of cell size
distribution on the average coordination number in dry foams simulated by
the Surface Evolver [26]. Here R is the equivalent radius of a sphere whose vol-
ume equals the volume of the cell. In our metallic foam compression datasets
the calculated polydispersity values are p =0.24, 0.25, 0.27, 0.30 and 0.42 for
stage 0, 1, 2, 3 and 4 respectively (see legend in Fig. 8(a)). The increase in
polydisperisty with increasing loading is expected due to the division of cells
as discussed in section 3.3. The average coordination numbers for stages 1-3
(see Tab. 1) are in very good agreement with Fig. 9 of [25] where an empirical
relation between polydispersity and coordination number is presented.

3.6 Anisotropy

A signature of the deformation band can also be detected by measures of
structural anisotropy which are defined without reference to a division of the

2 In 2D cellular structures such an increase of cell area with coordination number
is known as Lewis’ Law [22]
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foam into individual cells. Here we demonstrate that two different approaches
for quantifying structural anisotropy, based on Mean-Intercept Length (MIL)
tensor and Minkowski tensors respectively. We show that in the vicinity of the
deformation band, the structure becomes significantly more anisotropic.

For a structure that allows for a clear subdivision into convex cells such as
the foam studied here, the question of structural anisotropy and preferential
alignment can be addressed by analysis of individual cells. In section 3.4 we
discussed the aspect ratio of the cells and the angle between the cells’ principal
axis and the direction of strain. However, a method to quantify anisotropy and
alignment without having to resort to an individual cell analysis is useful for
several reasons. First, spatial structures exist for which the cell identification
is ill-defined or ambiguous, e.g. sufficiently disordered open-cell foams or strut
networks. Second, a cell-based measure is always strongly dependent on the
cell identification algorithm (e.g. watershed algorithm, as used in this study).
Given that anisotropy and alignment often are subtle effects, a direct measure
that applies to the binarised dataset (without cell information) has advantages.

A commonly used anisotropy measure is the MIL analysis, largely developed
for the analysis of bone and cellular structures [27–34]. For a biphasic structure
consisting of a solid and a void phase, the MIL tensor quantifies anisotropy
by counting the number of intersection points and the distance between them
when randomly placed straight lines cross the solid-void (binarised dataset)
interface for different fixed directions. In our measurements, we found that
shooting 50, 000 lines throught the structure for any given angle produces
reliable and reproducible results with error bar less than 0.005. The eigenvalues
in each of the principal axes are then calculated for the 3D structure according
to the distance between intercepts in the solid phase. The Degree of Anisotropy
(DA) is calculated as the ratio of the minimum to maximum eigenvalues. In
this notation, a DA value of 1 is reserved for isotropic structures whereas
DA=0 represents aligned structures. Using this method we measure a DA of
0.618, 0.664, 0.705, 0.727 and 0.754 for datasets 0-4 respectively.

An alternative anisotropy measure is provided by the Minkowski tensor method,
derived from an averaged distribution of interfacial directions [35]. Minkowski
tensors [36, 37] are shape-measures that generalise the notion of volume, sur-
face area and curvature to tensor-valued quantities, similar to the tensor of
inertia and the surface tensor [38]. They have been successfully applied to
free volume cells of liquid and jammed particle configurations [39, 40]. Be-
cause of their tensorial nature they offer, through ratios of their smallest-to-
largest eigenvalues, a direct measure of shape anisotropy. Minkowski tensors
are in principal integral quantities, i.e. representing averages over the whole
dataset; however by using a sliding window the analysis can be performed
locally, termed a Minkowski tensor map [36]. For a dataset representing a
three-dimensional object, there are six different independent Minkowski ten-
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sors in addition to the four scalar Minkowski functionals (volume, surface area,
integrated mean curvature and Euler topology index) [37, 41]. Two of these,
termed W 0,2

1 and W 0,2
2 , are translation-invariant (i.e. independent of the choice

of origin). Translation-invariance is important for structures where no physi-
cally motivated choice for the origin exists, such as structures with percolating
components.

For a bodyK with bounding surface ∂K the two translation-invariant Minkowski
tensors are defined as

W 0,2
1 (K) :=

1

3

∫
∂K
n̂⊗ n̂ dA, W 0,2

2 (K) :=
1

3

∫
∂K
H n̂⊗ n̂ dA (1)

The vector n is the surface normal vector of ∂K, ⊗ the tensor product of two
vectors (a ⊗ b)ij = aibj, and H is the point-wise (discrete) mean curvature
of ∂K. For a metallic foam, the body K is the solid phase and ∂K is the
solid-void interfacial surface. The tensor W 0,2

1 is readily interpreted as an in-
tegral measure that quantifies the fraction of surface area oriented in a given
direction. With ω(n) the surface area of that fraction of ∂S with surface nor-
mal in direction of n, one obtains ω0,2

1 (K) = W 0,2
1 (K)

∫
S ω(n)dn with the unit

sphere S. Similarly, W 0,2
2 provides a measure for orientational distribution of

curvatures.

Scalar anisotropy measures β0,2
1 and β0,2

2 are defined as the ratio of the minimal
to the maximal eigenvalue of the Minkowski tensors W 0,2

1 and W 0,2
2 . A value

of 1 indicates an isotropic body, and deviations from 1 quantify the degree of
anisotropy. Evaluated on the whole dataset, these provide immediate measures
that specify how anisotropic the surface or curvature distribution of the body
is as a whole. In order to provide a spatially resolved measure of anisotropy, a
sliding window is used and β0,2

1 and β0,2
2 are computed for the part of ∂K within

the sliding window and analysed as a function of the window position [36].

Fig. 9 shows DA and β0,2
2 evaluated on sliding windows of 1203 voxels (≈

5.53 mm3), arranged on a grid, as a function of the position z of the sliding
window centre in loading direction. Each data point represents an average
over all window positions with the same value of z. The error bars represent
the standard deviation of DA and β0,2

2 within these subvolumes. The domi-
nant compression zone between 10− 20 mm, discussed above, is evidenced by
a higher degree of anisotropy (lower values of DA and β0,2

2 of the structure
within this zone, as the strain is increased). This assessment of local structural
anisotropy, obtained using two independent methods by analysing the bina-
rised dataset without cell identification, agrees with cell-wise analyses using
aspect ratio in Sec. 3.4.

An interesting but not very well-resolved feature that is detected in both of
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Figure 9. Anisotropy measures, DA (left) and β0,22 (right), calculated based on MIL
and Minkowski tensors repectivley and averaged over 5.5× 5.5× 5.5 mm3 sub-vol-
umes sliding along the loading axis. The data from both methods show a pronounced
anisotropy around all four collapse bands in particular the main one (10− 20 mm).
The result obtained in the undeformed dataset (stage 0) shows a relatively larger
amount of anisotropy than other parts of the dataset just above the regions where
bands of deformation will form (G-J). Both methods of anisotropy measures confirm
this finding as shown in the figures above. The error bars (σ/

√
n) are standard devi-

ation, σ over all n subvolumes in each layer. The similarities between this figure and
Fig. 6(b) are notable even though Fig. 6(b) is calculated based on cell partitioning
while this plot is derived from binarised datasets.

our anisotropy measures is the apparent slight increase of anisotropy in the
uncompressed sample between 20− 30 mm, see Fig. 9. This area is just above
the region where most cells will collapse at later stages of compression. While
more experimental data are needed to fully support this idea, it is tempting
to suggest that the deformation is most favoured in this most anisotropic
region of the sample, that will then move to the 10 − 20 mm region of the
final compressed sample. A similar behaviour is also observed above other
deformation bands (G, I and J). This may suggest that anisotropy could be
interpreted as a precursor to deformation.

Minkowski tensor analysis, in combination with a sliding window approach,
offer a direct measure of anisotropy that may turn out physically relevant to
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the compression of solid foams and that is directly and robustly computed
on the binarised dataset. Importantly, a material which is anisotropic on one
length scale may be isotropic on another length scale, which points towards
the importance of the choice of the sliding window size, here fixed manually
considering the typical cell size. The consistency of the results obtained by
the MIL and the Minkowski tensor analysis is evidence that the conclusions
of this section are independent of the method used to quantify anisotropy.

4 Finite element elastic simulations

Having successfully demonstrated the ability to describe the structure of the
foam, we use the finite element method (FEM) to examine the elastic prop-
erties of the sample as a function of deformation. The FEM technique for
simulating mechanical properties of microstructured materials has been ex-
tensively used in materials science, producing excellent agreement with exper-
imental data of e.g., rock samples and cellular solids [8,42–46]. The FEM that
we implemented uses a variational formulation of the linear elastic equations
and finds the solution by minimising the elastic energy using a fast conjugate
gradient method. Detailes of our FEM implementation can be found in the
Appendix.

It is notable that althogh the metalic foam undergoes a plastic deformation
during the compression process, however, at each stage of compression (marked
as stages 0, 1, 2, 3 and 4) the foam starts to deform from zero strain and con-
sequently exhibits elastic properties for a small range of initial strain, before
plasitc deformaiton begins. This allows us to fully simulate the elastic response
of the foam for each stage of compression using the implementation of FEM
described in the Appendix.

The FEM simulation outputs the full tensorial stress response of our foam
samples. Initial bulk and shear moduli of 76 GPa and 26 GPa (Young’s mod-
ulus of 69 GPa) were assigned to the solid phase (aluminium) [12] and the
simulations were performed on full datasets of each stage of compression. Fig.
10 shows the evolution of Young’s modulus and shear components of the com-
pliance tensor (see the Appendix) as compression progresses. A few points are
noteworthy of pointing out; i) the Young’s modulus in all directions for the
uncompressed stage -stage 0- has a higher value than for stage 1. This can be
understood by examining the stress-strain response in the first stage shown in
Fig. 1. Clearly, the yield limit stress is reached at stage 1, after a small stress
overshoot, marking the beginning of plastic deformation. The simulation val-
ues for Young’s modulus for stage 0 correspond to pre-yielding, whereas the
simulation values for stage 1 correspond to deformation immediately after the
yield point. Therefore, it is expected that the microstructure shows a larger
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Figure 10. (a) Young’s modulus of the foam sample (vertical axis) at each stage
of compression derived from FEM simulations. The effective Young’s moduli are
normalised to that of solid phase (69 GPa). As the compression progresses, the
compressive response of the foam becomes stronger. (b) Shear components of the
compliance tensor as described in the text.

Young’s modulus before the start of deformation in the sample. ii) From stage
1 to stage 4, values of Young’s modulus increase as compression progresses,
suggesting stiffening of the structure in all directions, in particular the loading
direction (Yz bsed on the notation used in the Appendix). iii) Fig. 10(b) also
shows a strong increase of Gzx (shear component in the direction x in the x−y
plane) while the two other shear elements (shear in y − z and x − z planes)
remain nearly invariant and behave similarly. This result is consistent with
the cell orientation analysis presented in section 3.4 where we showed that
loading causes the cells to deform such that their longest axis approaches the
x− y plane (increasing γ angle). Also, the decreasing rate of α is higher than
of β which in turn causes shear in x direction.

Enhancement of Gzx is also expected from the uniaxial experimental setup
with lateral confinement. Inspecting the reconstructed images from the tomo-
gram (see Figs. 2 and 5) shows that the collapse of cells and density localisation
occurs primarily in x− y planes making the structure harder to shear in x− y
plane hence strengthening of Gzx.

We also repeat the FEM simulations in layers along the loading axis. In order
to investigate the size effect in our simulations, two layer sizes of 50.0×50.0×
5.5 mm3 (approximately five cell diameter thick) and 50.0× 50.0× 13.5 mm3

(approximately ten cell diameter thick) are considered and the Young’s mod-
ulus is estimated for these. Fig. 11 shows the results of this analysis (5.5 mm
height layer in the top row and 13.5 mm layer in the bottom row). Each point
represents normalised Young’s modulus on the vertical axis and the position
z of the slab centre in loading direction. It is seen that all components of the
Young’s modulus increase as the compression increases. The continuous build
up of Yx and Yy could be due to the lateral constrain while Yz reflects the
response of local structure to uniaxial loading with less influence to the con-
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Figure 11. Effective Young’s modulus of the foam sample (vertical axis) at each
stage of compression along three principal axes Yx, Yy and Yz derived from the
FEM simulations. The effective Young moduli are normalized to that of the solid
phase (69 GPa). As the compression progresses, the foam becomes stiffer. Top row
represents data for slab size 5.5 mm bottom row for 13.5 mm.

fining boundary condition. Also the variability of Yy seems to be higher than
Yx. This could be attributed to the orientation of cells as discussed in section
3.4. We are, however, unsure of an appropriate explanation for this variability.

The enhancement in Yx and Yy is quite pronounced around the region of the
main collapse band (10−20 mm), whereas they decrease around this region as
loading increases. A similar behaviour is also observed for the top part of the
foam sample where a minor collapse is registered. This suggests that when a
band starts to form, the Yz in that part becomes weaker than in other parts of
the sample and as a result the sample deforms easily upon further compression
in this region. This trend is more visible in the 13.5 mm thick layer (Fig. 11(d-
f)). Comparing the same component of Young’s modulus in different layer sizes
(Fig. 11(a-c)) shows that their overall trend is similar. This implies that the
sub-volumes (layers) chosen for the simulations are representative and the
simulation results are reliable for the chosen sizes.

Direct comparison of the experimental data (Fig. 1) with our FEM simulations
(Fig. 10) is not possible. This is because of the lateral confinmet design of
the steel sleve that is central to our compression experiment [3]. During the
loading, the foam was not accessible from outside and therefore impossible to
use an extensometer, neither contact nor non-contact extensometer. Hence an
accurate experimental value for displacement associated exclusively with the
foam sample was not measured by mounting a strain gage on the sample. Thus,
the recorded displacement also includes that associated with the deformation
of the load train.
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Relative slope of successive
1
2

2
3

3
4

compression stages

Experiment 0.72± 0.11 0.70± 0.17 0.71± 0.08

Simulation 0.77± 0.03 0.93± 0.03 0.81± 0.03

Table 3
Comparison of the experimental results and FEM simulations. We compare the
relative changes in loading slopes from experimental stress-strain curves with the
compressive moduli that was calculated using FEM simulations.

However, we can compare the relative changes in loading slopes (which is in
fact proportional to the actual Yz) with deformation for both simulations and
experiment. From experimental stress-strain curve (see Fig. 1) we can measure
the slopes of the linear part of the curves at the start of each stage, which
are 0.097, 0.181, 0.259 and 0.366 for stage 1, stage 2, stage 3 and stage 4
respectively. Tab. 3 summarises the ratio of this slopes between successive
stages as well as those obtained from simulation. The results show reasonable
agreement between simulations and experiment within the errorbar.

5 Summary and conclusions

A block of ALPORAS foam was uniaxially compressed while laterally con-
strained. Tomograms were obtained in the undeformed and 4 deformed stages
during interruptions of compression. Beside normal image analysis, a novel
mathematical tool, Minkowski tensors, as well as MIL were used to measure
the anisotropy in the datasets without the requirement of cell partitioning.
FE modelling of elastic properties based on the tomographic data was carried
out.

• As external loading increases, the cells begin to deform and their orienta-
tion changes such that the longest axis of the cells tends to lie in planes
perpendicular to the loading direction.
• The uniaxial compression for the boundary condition of our experiment,

causes the cells to deform and apparently divide into smaller sizes as oppos-
ing faces of the cells buckle and eventually touch. This results in an increase
in the polydispersity of the sample with loading.
• The major part of deformation localises in layers that are mostly parallel

and are apart from each other by ≈ 4− 5 cell diameter.
• Measurements of anisotropy based on two independent methods of Minkowski

tensors and MIL applied show that regions with high degrees of local anisotropy
in the undeformed foam are likely to induce collapse bands as loading in-
creases. Additionally cell shape analysis show that local anisotropy of cells
combined with cells orientation and size can also be a player in triggering
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localised deformation.
• Finite element analysis of the entire sample correctly predicts a lower Young’s

modulus after passing yield limit stress at the end of stage 1. The FEM anal-
ysis of individual layers reveals that the effect of lateral constraint on Yx and
Yy could be that of strain build up, while Yz predicts further deformation
of structure in regions where foam is already deformed.

The combination of experimental and numerical tools employed in this work
shows the potential to predict physical properties from images of complex
cellular materials. This could be further developed in the future towards a
routinely applied method.

Acknowledgements

MS thanks ARC Discovery (DP0881458) for the financial support. MS also
thanks Eva Franklin for proofreading the first draft and Ajay Limay for assist-
ing with the creation of Figure 2. GEST acknowledges support by the German
research foundation (DFG) through grant SCH R1148/3-1. SH, JB and FGM
acknowledge funding from the European Space Agency (MAPs AO-99-108 and
AO-99-075).

Appendix

The segmented datasets give a 3D representation of the foam’s structure and
each three-dimensional volume element in the segmented image is called a
voxel (see sec. 2). In our FEM implementation, each voxel is taken to be
a cubic finite element. In order to calculate the mechanical response of the
foam samples, an applied displacement field is distributed initially across all
the voxels such that a constant strain is imposed along the length of the
sample [44]. For a given microstructure, subject to applied fields or other
boundary conditions, the final elastic displacement distribution is such that
the total energy (E) stored is minimised:

E =
1

2

∫
v
εij Cijkl εkl dv (2)

Here ε is the strain field (a 2nd rank tensor), C is the stiffness tensor (a 4th

rank tensor), dv is the volume element and the integration is over the entire
sample. Minimisation of elastic energy means that the gradient of the energy
with respect to elastic displacement variables, um, is zero ( ∂E

∂um
= 0). From
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Eq.2, we can write: Cijkl = ∂2E
∂εij∂εkl

. The relationship between stress and strain

can be expressed as [σ] = [C][ε] where [σ] and [ε] are stress and strain tensors
respectively. In the most generalised form, [C] has 81 independent elements.
However, using the symmetry (minor and major symmetries) and also the fact
that experimental set-up imposes orthotropic (transverse) symmetry on our
foam sample [47], [C] can be re-written using Voigt’s notation which contains
only nine independet elements:

Cijkl =



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(3)

Here C12 = C21, C13 = C31 and C23 = C32. The inverse of this matrix is
known as compliance tensor whose elements are directly proportional to the
mechanical properties of the structure and is commonly written as [48]:

Sijkl =



1
Yx
−νxy

Y x
−νxz
Y x

0 0 0

−νyx
Y y

1
Yy
−νyz

Y y
0 0 0

−νzx
Y z
−νzy

Y z
1
Yz

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gyx

0

0 0 0 0 0 1
Gxy


(4)

where Yi is the Young’s modulus along axis i, Gij is the shear modulus in
direction j on the plane whose normal is in direction i, and νij is the Poisson’s
ratio that corresponds to a contraction in direction j when an extension is
applied in direction i 3 . All the elements in tensor S can be calculated from
our FEM simulations, which allows for a complete understanding of the full
tensorial stress response of anisotropic materials such as our foam sample.

3 Values of Poisson’s ratio calculated in our simulations are very close to 0.
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